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tion of Vani to the crystal energy. Indeed, that contribu­
tion to ilEa which is most important in the quantum 
calculation actually vanishes as a consequence of the 
crystal symmetry if the molecules are pinned precisely 
at lattice sites. We shall discuss this and related points 
further below. 

The remainder of the paper is organized as follows: 
Section 2 contains a review of the quantum crystal 
formalism and of the anisotropic potential, while sec­
tion 3 describes those modifications of our formalism 
which are necessary to handle Vani ; finally, in section 4 
we present and discuss the results, assuming the crystal 
is 100 % parahydrogen . 

2. Review 

2.1. Quantum crystal formalism 

The self-consistent calculation given by EBNER and 
SUNG (1971 b) of the ground state properties of quan­
tum crystals can be summarized with several basic 
equations. First, the single-particle wave function 'P;(l) 
of a particle localized around lattice position R i is 
determined from the equation* 

[- ;~ +U;(L)] 'Pi(l) = E'P;(l), (1) 

where m is the mass of a hydrogen molecule and u i(1) 
is the single-particle self-consistent field which is taken 
in the harmonic approximation 
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u;(t) = uo+ - Crt-RJ . 
2m 

(2) 

The symbols 1,2, etc. stand for r1 , r2 , •. . The constants 
U o and 0(2 are found by expanding the relation 

ui(1) = ~' f V(l, 2) Xij(L ,2) 'P](2) d 3
r 2 (3) 

in powers of 'i-RiO The prime on the summation sign 
denotes that the summation is over all j # i ; V(l, 2) is 
the interparticle interaction, and XuCI, 2) is the two­
particle correlation function for particles 1 and 2 local­

ized around sites i and j. This function is found from 

the two-particle equation 
V 2 V 2 

{ 
_ _ 1 _ _ 2_ +u;(1)+u/2)+VCl,2)-Wi/l,2) 

2m 2m 

+.1ij(1, 2)-AO} 'PiCl) 'P/2) XuC 1, 2) = 0, (4) 

* The units are such that Ii = k = I. 

where 

W;/l, 2) = J VC1, 2) Xij(1, 2) 'P](2) d 3
'2 

+ J veT, 2) Xij(I, 2) 'P?(I) d
3
'1, (5) 

and LI ij(l, 2) contains some three-body correlation ef­
fects. It is approximated by p(r12 -Ri), where p is 
chosen so that the condition 

is satisfied. Here Rij = Ri-Rj and 1.12 = '1 -r2' The 
parameter p turns out to be nOll-zero only for nearest 
neighbors. Finally, the normalization of 'Pi(l) and 
Xij(l, 2) is specified: 

f 'P?Cl) d
3
r 1 = 1 (7) 

and 

Using eq. (1) and making some simple approxima­
tions, we may write the two-particle equation for Xij in 
the form 

[ 
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HooXijm == -;:;; de + vm 
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+ m (~ -Ri) d~ - WU<~) 

+ p (~- Rij)] Xijm = Al Xijm, (9) 

where ~ = r12 , v(~) = V(1, 2), and Wijm is an ap­
proximation form of Wi/I, 2) in which it is averaged 
over all motions of particles 1 and 2 which can occur 
at constant r12 . These equations are solved simultane­

ously for Xii' 'Pi and U i · 

Let us compare our method with three other recent 
calculations of the ground state energy in solid hydro­
gen. The first is tlie semi-elassical a-pproach of POL­
LOCK et al. (1972) in which the molecules are initially 
fixed on lattice sites R j for the purpose of calculating 
the effective field around an individual site R i. This is 

u?(1) = I' v(1 rl- R j I). 
j 
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The next step is to put in zero-point motion, which is 
done using the Domb-Salter approximation for the 
normal modes of the system. This method has the vir­
tue of being very simple and is also such that finite 
temperature can be taken into account. At the same 
time, because of the rather extreme approximations 
made, the method should be checked against more 
sophisticated (and presumably more accurate) calcula­
tions. This has been done by the Cornell group who 
find it to be reliable at sufficiently small molar volume. 

KRUMHANSL and Wu (1972) have given a variational 
calculation of E in which short-range correlations are 
included by introducing a Jastrow-type pair-correla­
tion function into the trial wave function. The expecta­
tion value of the Hamiltonian and the normalization 
integral are evaluated using a cluster expansion, a tech­
nique used in the quantum crystal problem by NOSA­
NOW (1966). Nosanow chooses a two-particle correla­
tion functionf(r12) such that the peak in the function 
is independent of molar volume ; Krumhansl and Wu, 
on the other hand, choose a function such that the peak 
moves to a smaller value of r12 as the volume is de­
creased. In our formalism, the condition expressed by 
eq. (6) has the same effect on our correlation function 
Xij. As an example, in fig. 1 we plot Xij(r) for nearest 
neighbors at molar volumes of 10 and 23 cm3 cor­
responding to nearest neighbor distances of 2.88 A and 
3.78 A, respectively. Krumhansl and Wuintroduce this 
behavior not only because it is physically reasonable, 
but also because it maintains good convergence of the 
cluster expansion at small molar volumes. 

Finally, we mention the work of BRUCE (1972) which 
is also a variational calculation of E using a Jastrow­
type pair correlation function in the trial wave func­
tion. Uncertainties associated with the cluster expan­
sion are avoided by using Monte-Carlo methods to 
evaluate many-dimensional integrals. The procedure is 
the same as originally applied to solid helium by HAN­
SEN and LEVESQUE (1968). From a theoretical point of 
view, it is encouraging that all of the above-described 
formalisms lead to comparable results for E in solid H z 
over a wide range of molar volume. 

2.2. Intermolecular interaction 

The interaction between a pair of parahydrogen 
molecules may be expanded as a sum over spherical 
harmonics; we shall approximate the sum by 
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Fig. 1. Nearest-neighbor correlation functions x (r) versus r. 
A : V = 23 cm3 corresponding to a nearest-neighbor distance 
a = 3.78 A; B : V = 10 cm3 corresponding to a = 2.88 A. 

Y(l , 2; W1' w z) = [yoo(1,2) YO(Wl) Yo(wz)] 

+ [yoz(l, 2) YO(w 1) Y2 (W 2 ) 

+ yzo(l, 2) YZ(w 1) Yo(wz) 

+ y22(1 , 2) Y2(W 1) Yz(w2)] , (10) 

where Yo and Y2 are the spherical harmonics for I = 0, 
m = 0, and I = 2, m = 0 ; W1 and W 2 refer to the direc­
tions of the interatomic axes of molecules 1 and 2 
relative to the c-axis of the hcp crystal. The first term 
on the right-hand side of eq. (10) is just the isotropic 
part of the interaction, 

where v is e.g. the E6 potential described in section 1. 
There is no reliable empirical determination of the 

anisotropic part of the interaction, Y.ni • NAKAMURA 
(1955) has expanded the theoretical expression of DE 

BOER (1942), finding for molecules in the I = ° and 
2 states: 

.J\6rc B(r) .J!rc I [Y2m(W 1) Y2. - m(Q1 2) 
m 


